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A b s t r a c t . The challenge of predicting soil organic carbon 
distribution accurately has received great attention in order to sup-
port urban green space soil management during climate change. This 
study compared four geostatistical methods: kriging combined with 
land use, ordinary kriging, inverse distance weighting and radial basis 
function, to predict the spatial distribution patterns of soil organic 
carbon content and soil organic carbon density in the Xiong'an New 
Area, estimate organic carbon stocks, and assess the role of land 
use types in the spatial prediction of soil organic carbon stocks. The 
results showed that the soil organic carbon content decreased with 
increasing soil depth, and was significantly affected by different 
land use types (p<0.05). The correlation coefficient values of kriging 
combined with land use were on average 0.229 higher than those of 
other methods. The root mean squared error and the mean absolute 
error of kriging combined with land use were on average 0.148 and 
0.139 lower than those of the other methods. Kriging combined with 
land use has a greater advantage over other methods in predicting the 
spatial distribution of soil organic carbon content, and also the spatial 
distribution of soil organic carbon density and the spatial distribution 
of soil organic carbon, the prediction results of the four interpolation 
methods were similar. The average soil organic carbon density was 
2085 Gg (0-30 cm) and 1363 Gg (30-60 cm). In conclusion, land use 
type clearly influences the spatial distribution of soil organic carbon 
in urban areas, and by using land use type as auxiliary data, we can 
obtain a more accurate spatial distribution of soil organic carbon and 
predict the total storage capacity of the soil. This study may result in 
significant advances in the spatial prediction of soil organic carbon 
for urban areas.

Keywords: geostatistics, soil organic carbon, spatial distri-
bution, urban land use, Xiong'an New Area

INTRODUCTION

Soil is the most crucial and also the largest carbon res-
ervoir in terrestrial ecosystems (Yang et al., 2007), it stores 
more than three-quarters of the world's terrestrial carbon and 
plays a vital role in the terrestrial carbon cycle (Johnston et 
al., 2004; Lal, 2004). As an essential component of the soil 
(Scharlemann et al., 2014), soil organic carbon (SOC) is 
a major participant in the soil-atmosphere carbon cycle, with 
litter originating from vegetation falling continuously and 
storing carbon in the the form of SOC through assimilation, 
SOC also emits CO2 to the atmosphere through decomposi-
tion (Kirschbaum, 2000; Janzen, 2004; Keith et al., 2021). 
Soil carbon sequestration can effectively mitigate the green-
house effect and also reduce the heat island effect to some 
extent, it is regarded as one of the keys to solving the problem 
of climate change (Viscarra et al., 2014; Minasny et al., 2017; 
Blais, 2021). SOC is also a basic indicator of soil fertility, and 
the level of SOC directly affects the potential productivity of 
vegetation and the general quality of the environment, it plays 
a vital role in maintaining the sustainability of the ecosystem 
(Stockmann et al., 2013; Liu et al., 2017).
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SOC content depends on both the intrinsic and extrinsic 
soil factors. In general, natural factors (e.g. climate, veg-
etation, and topography) and the heterogeneity of human 
activities (e.g. fossil fuel burning, land use change, and fer-
tilizer application) are the main causes of dynamic changes 
in SOC at different spatial scales (Gelaw et al., 2014). Since 
the Industrial Revolution, the impact of human activity has 
led to accelerated global warming (Panja, 2021). Rising 
temperatures will in turn accelerate carbon emissions from 
the soil into the atmosphere and thus the accumulation of 
CO2 (Davidson and Janssens, 2006; Hopple et al., 2020). 
The soil carbon sequestration capacity and its duration will 
also be reduced, resulting in a decrease in SOC content 
and hence a decline in soil quality and in the productiv-
ity of biomass (Lal, 2004; Luo, 2020). In particular, with 
the continuous increase in the level of social development, 
the degree of damage to the original ecosystem caused by 
human activities has intensified, resulting in significant 
differences in the distribution of SOC at different spatial 
scales. This phenomenon not only affects regional land use 
planning but also poses a more serious challenge to environ-
mental management (Mabit and Bernard, 2010; Vasenev et 
al., 2014; Xu et al., 2016). Therefore, accurate predictions 
of soil organic carbon and its spatial distribution pattern 
are of great significance in managing and utilizing land 
resources in response to climate change.

In recent years, with the continuous development of 
geostatistics and GIS technology, the method of combin-
ing both technologies has been widely used to evaluate 
the spatial distribution of various soil attributes and to 
explore the influence of different factors on the spatial 
distribution of soil attributes (Yao et al., 2006; Minasny 
et al., 2017). There have been many studies concerning 
the spatial distribution of SOC and the factors affecting 
spatial distribution, including natural factors such as soil 
depth, topographic elements, and elevation (Zhang et al., 
2018; Li et al., 2019), anthropogenic factors such as deep 
soil flipping have also been studied (Schiedung et al., 
2019). These studies were focused on a certain land use 
mode (e.g. farmland) or various land use types with less 
human disturbance, and rarely involved urban areas where 
humans gather in large numbers. At present, the ecological 
crisis has become a growing concern for countries world-
wide. In response to the dual challenges of global climate 
change and accelerated urbanization, the promotion of 
eco-city construction has gradually become an interna-
tional policy priority (Joss et al., 2013). "Carbon" has been 
placed at the centre of eco-city policy and construction. In 
this context, changes in SOC content and spatial distribu-
tion have not only had a significant impact on the global 
carbon cycle and greenhouse gas emissions, but are also 
particularly important for the construction of the optimal 
eco-city (Deng et al., 2018; Ye et al., 2021). At the same 
time, the differences between different land use types in 
urban areas have become more and more significant after 

long-term human development and transformation. This 
phenomenon leads to an effective increase or decrease in 
SOC content in different areas, which greatly impacts the 
spatial distribution of SOC (Boubehziz et al., 2020; Barreto 
et al., 2021). Therefore, exploring the influence of land use 
types on the spatial distribution of SOC, and determining 
the of SOC stock (SOCS), forms an important foundation 
for eco-city construction based on original urban planning, 
especially for greening construction, environmental protec-
tion, and the rational development of land resources (Yan 
et al., 2015).

The Xiong'an New Area is a state-level new area estab-
lished in China in 2017 as part of an effort to centralize the 
process of transferring non-capital functions from Beijing 
to other cities (Zou and Zhao, 2018). The eco-city is one of 
the priorities of the planned development of the Xiongan 
New Area. This study is based on field survey data from 
the east of Xiong'an New Area, and uses kriging combined 
with land use (KLU) and three other traditional interpola-
tion methods; inverse distance weighting (IDW), radial 
basis function (RBF), and ordinary kriging (OK), to (1) 
study the spatial variability in SOC at two depths (0-30, 
30-60 cm) and analyse the effect of land use on SOC, (2) 
analyse the spatial distribution pattern of SOC content 
by combining four interpolation methods, (3) analyse the 
spatial distribution pattern of SOC density (SOCD) by 
combining different calculation and interpolation methods, 
(4) calculate the regional SOCS based on the interpolation 
results. This study may serve to provide a theoretical basis 
to illustrate the spatial distribution characteristics of SOC 
in the urbanization process, to show the extent to which 
land resources are used in a reasonable way, and may opti-
mize the process of conducting urban planning and land 
management in the future.

MATERIALS AND METHODS

The study area (Fig. 1) is located in the east of the 
Xiong'an New Area (115°59'-116°19' E, 38°46'-39°10' N), 
Hebei Province, China, it is at the core of the construction 
of an ecological transition zone of the Beijing-Tianjin-
Baoding Plain, which covers a total area of 677.6 km². 
The terrain is flat and open, and dominated by low-altitude 
plains. The primary soil type is alluvial soil, and the soil 
texture is mainly light flux loam. The weather is typical of 
a warm temperate semi-arid and semi-humid monsoon cli-
mate, with four distinct seasons of rain and heat, with an 
average annual temperature of 12.9°C and average annual 
precipitation of about 566.1 mm, mainly concentrated in the 
July and August period (Hebei Statistical Bureau, 2021).

In this study, a systematic sampling approach was 
adopted, using the CreateFishnet function in the ArcGIS 
software to generate soil sampling sites with a grid spac-
ing of 2.5×2.5 km, a total of 91 soil survey points were 
selected, sampling points which included water bodies, 
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buildings, and hardened roads were excluded. The soil sur-
vey was carried out using GPS navigation to the sampling 
points from late October to mid-November in 2020.

A five-point sampling method was used to collect soil 
samples from the upper layer (0-30 cm) and lower layer 
(30-60 cm) of the soil at the sampling point and also from 
four nearby corners, with a soil weight of not less than 
300 g being collected at each point. The upper and lower 
layers of soil from different points were mixed using equal 
masses and returned to the laboratory. Then they were suc-
cessively air-dried, ground, and sieved before being placed 
under observation for relevant indicators. The potassium 
dichromate-external heating method was used to determine 
the SOC content, and the drying method determined the 
soil bulk density (SBD) (Bao, 2005).

The semivariance function is a unique analytical tool in 
geostatistics and is widely used to describe the variability 
in the spatial structure of soil properties (Blanchet et al., 
2017). If a soil property has second-order stationarity, its 
semivariance function γ(h) is calculated as follows:

γ (h) =
1

2N(h)

N(h)∑

i=1

[Z(xi)− Z(xi + h)]2 , (1)

where: N(h) is the number of point pairs spaced at h, and Z(xi) 
and Z(xi+h) are the values at points xi and xi+h respectively.

The semivariance function has several parameters, sill 
(C0 + C), nugget (C0) and range. The ratio of the nugget 
to the sill (C0/(C0 + C)) reflects the spatial correlation of 
the original data. The lower the ratio, the closer the spatial 
correlation (Cambardella et al., 1994). Common models 
which fit the semivariance function include exponential, 
Gaussian, spherical, etc. The optimal semivariance model 
was selected based on the determination coefficient (R2) 
being as close as posiblepossible to 1 and residuals (RSS) 
being as low as possible.

OK is the most basic kriging method. It uses a semi-
variance function to calculate the mean degree of difference 
between the unsampled point and the neighbouring sam-
pling points (Robinson and Metternicht, 2006):

Ẑ(x0) =
n∑

i=1

λiz(xi) , (2)

where: Ẑ(x0) is the predicted value at the unsampled point 
x0, z(xi) is the observed value at the sampling point xi, n is 
the number of samples, and λi is the weight which depends 
not only on the distance between the unsampled point and 
the sampling point, but also on the overall spatial layout 
based on the sampling point.

IDW is one of the most commonly applied determin-
istic interpolation methods for spatial interpolation in soil 
science. It is assumed that the value of the unsampled 
point is the weighted average of the sampling points in the 
neighbourhood around the unsampled point (Robinson and 
Metternicht, 2006). The weight assigned to the unsampled 
point is equivalent to the inverse of its distance from the 
sampling point (Bhunia et al., 2016):

(3)

where: Ẑ(x0) is the predicted value at the unsampled point 
x0, z(xi) is the observed value at the sampling point, di is the 
distance between the unsampled point and the i-th sampling 
point, and p is the weight.

RBF predicts the unsampled points by generating 
a smooth surface from all known sampling points.

KLU is an extension of the kriging method. Natural fac-
tors do not influence the spatial distribution of SOC content 
to a significant extent because the study area is flat and has 
a single soil type without significant heterogeneity. Land 
use type, which is the most apparent heterogeneity due to 
human activities in the study area, was used as an auxiliary 
variable in order to reduce the uncertainty it added to the 
overall prediction of the study area.

Based on the current status of land use in the 2018 and 
2020 field surveys and the needs of the study, the land use 
types in the study area were classified into five categories: 
built-up land, arbour forest (existing farmland shelterbelt 

Fig. 1. Location map of the study area and distribution of the sam-
pling sites.
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and nontimber product forest in the Xiong'an New Area), 
immature forest (new plantations planted after the estab-
lishment of Xiong'an New Area and nursery), wetland 
and farmland (Fig. 1), of which the built-up land included 
bare land and barren hills (Ministry of Natural Resources, 
People’s Republic of China, 2017). Based on the specific 
location of the sampling sites in Fig. 1 and the field survey 
results, the land use types of the sampling sites were judged. 
The sample points of the built-up land, arbour forest, imma-
ture forest, wetland and farmland were 19, 13, 15, 5 and 
39, respectively. The observed value of each sampling point 
Z(xki) was divided into the sum of the mean value of the 
same land use type μ(tk) and the residual r(xki). The formula 
was expressed as follows:

Z(xki) = µ(tk) + r(xki) , (4)

where: xki is the location of the sample point Z(xki) and tk is 
the land use type to which the sample point belongs.

The residuals r(xki) were kriged as a new regional vari-
able and the predicted value of each unsampled point Ẑ(xki) 
was the sum of the mean land use type μ(tk) and the pre-
dicted value of the residuals r̂ (xkj):

Ẑ(xkj) = µ(tk) + r̂(xkj) . (5)

Two methods were used to calculate the SOCD in this 
study, then the SOCS of each method was calculated:

1. The SOC and SBD of each sampling point were used to 
calculate the SOCD of the sampling point. Then the obtained 
SOCD of the sampling point was used for spatial analysis in 
order to predict the spatial distribution of SOCD in the study 
area. Finally, the SOCS of the study area was predicted.

2. A spatial analysis was performed on the actual SOC 
and SBD data of the sampling points separately, and the 
SOCD of the whole study area was calculated using a ras-
ter calculation. Thus, the spatial distribution of SOCD was 
predicted, and the SOCS of the study area was calculated.

The SOCD values were calculated at various soil depths 
using the following equation:

SOCDr =
BrCrHr

100
, (6)

where: SOCDr is the SOCD in layer r (kg m–2), Br is the 
SBD in layer r (g cm–3), Cr is the SOC content in layer r 
(g kg–1) and Hr is the thickness of the soil layer in layer r.

A spatial interpolation was performed using four inter-
polation methods in order to generate SOCS surfaces for 
the entire study area, which were then exported as raster 
layers with a resolution of 100×100 m. SOCS (Gg) was 
then calculated using the following equation:

SOCS =
n∑

i

(socdi S 10−6) , (7)

where: socdi is the density of each grid (kg m–2), and S is the 
area of each grid (m2).

The SOCD values obtained using Method 1 are written 
as SOCD1, and the overall SOCS are written as SOCS1. The 
SOCD in Method 2 are written as SOCD2, and the overall 
SOCS are written as SOCS2.

The cross-validation method was used to test the pre-
diction accuracy of different interpolation methods in the 
study area. The evaluation indicators included the root 
mean squared error (RMSE), the mean absolute error 
(MAE), and the Pearson correlation coefficient R. Larger R 
values, and lower RMSE and MAE values indicate a higher 
prediction accuracy.

RMSE =

√√√√ 1

n

n∑

i=1

(xi − xj)2 , (8)

MAE =
1

n

n∑

i=1

|(xj − xi)| , (9)

(10)

where: n is the number of validation points, xi is the observed 
value of the sampling points and xj 

is the predicted value of 
the sampling points.

RESULTS

The descriptive statistics of SOC content, SBD, and 
SOCD1 in the study area are shown in Table 1. The SOC 
content ranged from 1.96~13.25 g kg–1, SBD ranged from 
0.95~1.69 g cm–3 and SOCD1 ranged from 0.87~5.68 kg m–2. 
As the soil layer depth increased, the mean of the SOC con-
tent decreased by 35.96%, the mean of SOCD1 decreased 
by 33.66%, and the mean of SBD increased by 4.32%. The 
coefficient of variation (CV) reflects the degree of overall 
variability in the sample point values (Tang et al., 2017). 
The spatial variability of SBD was found to be weak. The 
CV values of SOC content and SOCD1 varied from 35.95 
to 44.85, which indicated a moderate degree of variability.

The analysis of variance (ANOVA) results showed that the 
SOC content and SOCD1 were significantly different between 
the different land use types (p<0.05), while the differences in 
SBD were not significant. Fig. 2 shows the mean variation in 
SOC content and SOCD1 between different land use types. 
In the upper soil layer (0-30 cm), built-up land was found to 
have the lowest mean SOC content (5.42 g kg 1) and mean 
SOCD (2.17 kg m–2), about 70% of the average SOC content 
and 71% of the average SOCD1, respectively; immature forest 
had the highest mean SOC content (9.26 g kg–1), about 1.71 
times that of built-up land; arbour forest had the highest mean 
SOCD1 (3.49 kg m–2), about 1.61 times that of built-up land; 
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the SOC content and SOCD1 of the remaining land use types 
did not differ significantly. In the lower soil layer (30-60 cm), 
the mean SOC content (4.01 g kg–1) and mean SOCD1 (1.67 kg 
m–2) were equally lowest in built-up land; the wetlands had 
the wwhighest mean SOC content (7.32 g kg–1) and SOCD1 
(2.90 kg m–2), which were about 1.83 and 1.74 times higher 
than the values found for the built-up land, respectively.

The Kolmogorov-Smirnov (K-S) test was used to test 
the normality of the original values and their residuals of 
SOC content, SBD, and SOCD1. After the natural loga-
rithmic transformation of the skewed values, all data are 
normally distributed and may be analysed geometrically.

The optimal semivariance function fitting model was 
selected based on the R2 value closest to 1 and the small-
est RSS value, the specific model parameters are shown 
in Table 2. In the upper soil layer, the original values for 
SBD showed a pure nugget effect, and the optimal semivari-
ance function model for the residual values was a Gaussian 
model. The optimal semivariance model for SOC content 

and SOCD1 were spherical, and the residual values were 
exponential. In the lower soil layer, the optimal semivari-
ance model for the original values of the SOC content and 
SOCD1 were spherical, while for all of the other optimal 
semivariance models they were Gaussian. Some differences 
were found between the model parameters of the different 
approaches (Fig. 3). The C0/(C0+C) values of the original 
values were between 0.62 and 1.00, they all had weak spatial 
correlations. The C0/(C0+C) values of the residual data for 
both SOC content and SOCD decreased to different degrees 
compared to the original data. Meanwhile, the C0 and C0+C 
values of the residual data were lower than those of the orig-
inal data with the exception of the log-transformed values.

The correlation between the observed and the predict-
ed values of SOC content, SOCD1 and SOCD2 for the four 
interpolation methods are shown in Fig. 4. The accuracy 
and stability of the four interpolation methods were also 
assessed using RMSE, MAE and R (Table 3). The results 
showed that KLU had a significant advantage over the other 

Ta b l e  1. Descriptive statistics of SOC content, SBD and SOCD1

Soil properties Soil depth
(cm) Sample Max Min Mean SD CV

(%) Skewness Kurtosis

SOC (g kg–1) 0-30 91 13.25 2.31 7.73 2.80 36.22 0.14 –0.84
30-60 91 12.84 1.96 4.95 2.22 44.85 1.06 1.07

SBD (g cm–3) 0-30 91 1.69 0.99 1.33 0.15 11.28 0.05 –0.18
30-60 91 1.67 0.95 1.39 0.13 9.35 –0.67 1.09

SOCD1 (kg m–2) 0-30 91 5.68 1.04 3.06 1.10 35.95 0.26 –0.52
30-60 91 3.94 0.87 2.03 0.79 38.92 0.54 –0.71

SOC – soil organic carbon content, SBD – soil bulk density, SOCD1 – soil organic carbon density for each sample point obtained using 
Method 1, Max – maximum value, Min – minimum value, Mean – mean value, SD – standard deviation, CV – coefficient of variation.

Fig. 2. SOC content and SOCD1 for different soil layers and different land use types. Different lower case letters indicate a significant 
difference among the different land use types concerning the same soil properties for that layer at 0.05 significance level. The error bars 
denote the standard error of the mean.

Land useLand use



X. GUO et al.6

three interpolation methods. The correlations between the 
predicted values and the observed values obtained using 
KLU all reached a significant level (p<0.01). In the upper 
soil layer, the R values of KLU for SOC content, SOCD1 and 
SOCD2 were 0.476, 0.389 and 0.425, respectively, which 
were on average 0.326, 0.280, 0.323 higher than those of 
the other three methods. The RMSE values of KLU for SOC 
(2.459), SOCD1 (1.028) and SOCD2 (0.999) were all the 
lowest values, and had averages of 0.376, 0.101 and 0.132 

less than those of the other three methods. The MAE of KLU 
was also found to be closest to 0. In the lower soil layer, 
compared to the other interpolation methods, KLU on aver-
age increased in terms of R values by 0.112 (SOC), 0.177 
(SOCD1) and 0.156 (SOCD2), with an average decrease in 
RMSE compared to the other interpolation methods of 0.153 
(SOC), 0.068 (SOCD1) and 0.061 (SOCD2). The MAE of 
KLU was also found to be closest to 0.

Ta b l e  2. Best-fit semivariance models and their parameters for the various prediction approaches

Soil 
depth 
(cm)

Soil 
properties Approaches Distribution Models C0 C0+C C0 /(C0+C) Range 

(km) R2 RSS

0-30 SOC OK Normal Spherical 6.499 8.296 0.78 14.57 0.94 0.13

KLU Normal Exponential 3.370 6.741 0.50 12.33 0.96 0.12

SBD OK Normal Pure nugget effect 0.021 0.021 1.00 – – 6.92×10–6

KLU Normal Gaussian 0.019 0.020 0.93 28.66 0.45 5.05×10–6

SOCD1 OK Normal Spherical 1.008 1.261 0.80 17.86 0.98 2.31×10–3

KLU Normal Exponential 0.120 1.015 0.12 6.54 0.93 5.76×10–3

30-60 SOC OK Lognormal Spherical 0.132 0.212 0.62 19.57 0.88 5.79×10–4

KLU Normal Gaussian 3.041 5.484 0.55 27.97 0.96 0.144
SBD OK Normal Gaussian 0.014 0.019 0.72 20.69 0.88 3.60×10–6

KLU Normal Gaussian 0.013 0.016 0.75 18.43 0.82 4.34×10–6

SOCD1 OK Lognormal Spherical 0.134 0.167 0.80 17.91 0.76 3.51×10–4

KLU Normal Gaussian 0.455 0.574 0.79 16.95 0.65 5.64×10–3

OK – original values, KLU – residual values. Other explanation as in Table 1.

Fig. 3. Semivariograms of original values (OK) and their residuals (KLU) for SOC, SBD and SOCD1.
Distance (m)
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Fig. 4. Scatter plots of predicted and observed values for SOC, SOCD1 and SOCD2.
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In comparing the two methods of predicting SOCD, 
the KLU prediction accuracy of SOCD2 was found to be 
highest in the upper soil layer (RMSE=0.999, MAE=0.811, 
R=0.425); the KLU prediction accuracy of SOCD1 was 
found to be highest in the lower soil layer (RMSE = 0.690, 
MAE = 0.537, R = 0.486).

The SOC content and SOCD spatial distribution maps 
generated using KLU, OK, IDW and RBF are presented 
in Fig. 5 and Fig. 6. The high and low distribution of the 
SOC content and SOCD may be clearly determined from 
the colour changes in the interpolation maps. In terms of 
overall distribution, the distribution maps of SOCD1 and 
SOCD2 were highly consistent with the predicted SOC 
content distribution maps, and there were also some differ-
ences in terms of detail between the two types of prediction 
maps due to slight differences in SBD at different locations. 
All maps showed a similar trend, namely high values in the 
central-eastern part and low ones in the northwestern and 
central-western parts, showing a gradual decrease from the 
central-eastern part to the periphery and then to the south. 
This is consistent with the actual land use with built-up 
land being concentrated in the northern and central-western 
regions and forest and farmland being concentrated in the 
central-eastern and southern parts of the country.

At the same time, different interpolation methods 
produced a difference in the performance of local spatial 
features. The spatial distribution maps predicted by IDW 

Fig. 5. Spatial distribution of SOC.

Ta b l e  3. Precision evaluation indices of different interpolation 
methods

Soil depth
(cm)

Soil 
properties Approaches RMSE MAE R

0-30 SOC KLU 2.459 2.068 0.476**
OK 2.789 2.329 0.163

IDW 2.847 2.355 0.138
RBF 2.868 2.399 0.149

SOCD1 KLU 1.028 0.836 0.389**
OK 1.103 0.908 0.135

IDW 1.139 0.920 0.083
RBF 1.144 0.917 0.109

SOCD2 KLU 0.999 0.811 0.425**
OK 1.108 0.917 0.122

IDW 1.139 0.919 0.081
RBF 1.146 0.917 0.103

30-60 SOC KLU 1.810 1.393 0.573**
OK 1.981 1.615 0.442**

IDW 1.963 1.589 0.462**
RBF 1.943 1.567 0.480**

SOCD1 KLU 0.670 0.537 0.486**
OK 0.755 0.624 0.297**

IDW 0.761 0.618 0.307**
RBF 0.758 0.611 0.323**

SOCD2 KLU 0.694 0.535 0.482**
OK 0.755 0.624 0.313**

IDW 0.758 0.612 0.323**
RBF 0.755 0.605 0.341**

**Iindicates an extremely significant correlation at the 0.01 level. 
Other explanation as in Table 1.

SOC (g kg–1)SOC (g kg–1)SOC (g kg–1)

SOC (g kg–1) SOC (g kg–1) SOC (g kg–1)

SOC (g kg–1)

SOC (g kg–1)
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Fig. 6. Spatial distribution of SOCD1 and SOCD2.

SOCD1 (kg m–2)SOCD1 (kg m–2)SOCD1 (kg m–2) SOCD1 (kg m–2)

SOCD1 (kg m–2)SOCD1 (kg m–2)SOCD1 (kg m–2)SOCD1 (kg m–2)

SOCD2 (kg m–2)SOCD2 (kg m–2)SOCD2 (kg m–2)SOCD2 (kg m–2)

SOCD2 (kg m–2) SOCD2 (kg m–2) SOCD2 (kg m–2) SOCD2 (kg m–2)
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and RBF were relatively discrete, with many obvious 
"bull's eye" phenomena, showing local highlighting and 
a high degree of spatial heterogeneity; the spatial distribu-
tion maps predicted by OK vary relatively smoothly from 
high to low; the prediction results of the KLU method have 
many fragmented areas, with a high degree of similarity to 
the specific distribution of land use types in the study area, 
showing more regional distribution information.

For different soil depths, the SOCS results in the study 
area predicted using different methods did not differ signifi-
cantly (Table 4). In the upper soil layer, the predicted SOCS 
values ranged from 2065 to 2103 Gg, while in the lower 
soil layer, the predicted SOCS values ranged from 1296 to 
1400 Gg. The average SOCS value in the upper soil layer 
was on average 721.59 Gg higher than that in the lower soil 
layer, which was about 1.53 times higher than that in the 
lower soil layer.

DISCUSSION

The study results showed that the SOC content in the 
study area differed in both the vertical and horizontal dis-
tribution. In the vertical direction, the mean SOC content 
decreased with increasing soil depth, which is in agreement 
with the results that Yu et al. (2014) obtained in Songnen 
Plain and that Li et al. (2019) obtained in Northeast China. 
This is probably because the large amount of vegetation 
on the ground surface, the continuous accumulation of 
vegetation litter, long-term fertilization, tillage, and forest 
management practices all resulted in a much higher rate of 
nutrient increase in the upper soil layer than in the lower soil 
layer (Pan et al., 2010; Ghosh et al., 2018). At the same time, 
a significant degree of SOC spatial variability is found in the 
horizontal direction. Figure 5 shows the distribution of SOC 
content throughout the study area, it shows the correlation 
between SOC content and land use type. The SOC content 
varies with the land use pattern, and it is closely related to the 
land use type, this result is consistent with previous studies 
by Gelaw et al. (2014) and Boubehziz et al. (2020). From 
the collected soil samples (Fig. 2), the mean SOC contents of 

different land use types in the study area were, in descending 
order: built-up land < farmland < arbour forest < wetland < 
immature forest. Between the five land use types, the mean 
SOC content of the built-up land was approximately 2/3 that 
of the other land use types. This may be due to the fact that 
farmland and forest land surfaces have a large amount of 
vegetation which far exceeds that of built-up land, also, veg-
etation litterfall and root secretions are the primary sources 
of SOC (Bhunia et al., 2016) in addition, long-term fertili-
zation, tillage, forest management and other activities were 
found to result in the aggregation of SOC caused by anthro-
pogenic factors much greater than that of the influence of 
natural factors, thus accelerating such a phenomenon in areas 
other than the built-up land (Schiedung et al., 2019). In addi-
tion, Delelegn et al. (2017) found that sealing and plantation 
were more conducive to the increase in SOC content than 
farmland, which is consistent with our results that the SOC 
content of farmland was higher than that of built-up land 
but less than that of other land use types. In addition to the 
accumulation of dead branches, leaves and roots in the soil 
over time, this may be due to the fact that mature trees cre-
ate a benign local microclimate that effectively prevents soil 
erosion. Frequent tillage, however, caused damage to the soil 
structure and accelerated the rate of decomposition of SOC, 
which in turn caused a decrease in SOC.

SOC and SBD are direct determinants of SOCD and 
SOCS, but accurate data concerning SBD were often lacking 
in previous large-scale soil inventories (Wu et al., 2003; Sun 
et al., 2004; Allen et al., 2010). For example, Wu et al. (2003) 
obtained the required SBD according to the empirical rela-
tionship between SOC content and SBD. Sun et al. (2004) 
estimated the SBD by soil type, which involved taking the 
average capacity weights of the same soil genus or subclass. 
Therefore, in order to increase the prediction accuracy of 
SOCD and SOCS in the study area, the SBD was recorded 
separately for each sampling site. It is widely believed that 
with changes in soil porosity and agglomerate stability, SOC 
and SBD will show a negative correlation trend, which in 
turn leads to a different spatial distribution of SOC content 
and SOCD (Whalen et al., 2003; Yu et al., 2014). However, 
in this study (Figs 5, 6), the spatial distributions of SOC con-
tent and SOCD were approximately the same throughout the 
study area. This result was probably due to the relatively flat 
terrain and homogeneity of soil types throughout the study 
area, which greatly contributed to the fact that SBD did not 
vary to a great extent across the study area.

Although SOCS values are influenced by various fac-
tors such as climate, vegetation, and human activities, the 
main determinants were found to be SOC accumulation and 
decomposition rates (Xue et al., 2015). This finding is con-
sistent with the results of previous studies by Guan et al. 
(2015), the SOCS values found in this study area decreased 
with decreasing SOC content as the soil depth increased. 
The traditional method of estimating SOCS is to estimate the 
overall value using the average of soil types or land types, 

Ta b l e  4. SOCS using different interpolation methods

Soil depth
(cm) Approaches SOCS1

(Gg)
SOCS2

(Gg)

0-30 KLU 2065 2082

OK 2087 2102

IDW 2081 2095

RBF 2076 2090

30-60 KLU 1385 1400

OK 1296 1312

IDW 1372 1384

RBF 1371 1383

Explanation as in Table 1.



APPLICATION OF LAND USE MODES IN THE SPATIAL PREDICTION OF SOIL ORGANIC CARBON 11

which has the advantage of being a simple method but it 
also results in a high degree of uncertainty in the estimation 
of this value (Tang et al., 2017; Yao et al., 2019). In order 
to overcome this problem, geostatistical methods are widely 
used for detailed calculations. In this study, four interpola-
tion methods were used to estimate the SOCS of the study 
area. Even though the predictions of SOCD varied among 
the different methods, the predicted total SOCS values were 
similar, which is the same conclusion that was reached by 
using the results of Yao et al. (2019). However, according to 
Table 3, KLU has a higher degree of accuracy as compared 
with other interpolation methods, so it may be considered 
that the total reserves predicted by KLU are closest to the 
actual total reserves from among the four methods.

Both structural and stochastic factors may influence the 
spatial distribution of soil nutrients. The more substantial 
the influence of structural factors such as climate, topogra-
phy, and soil type, the closer the spatial correlation, while 
anthropogenic stochastic factors such as fertilization and 
tillage reduce the spatial correlation of soil nutrients (Jing 
et al., 2014; Durdevic et al., 2019). The variability in the 
effects of structural and stochastic factors on soil properties 
in different regions results in different degrees of spatial 
variability in the soil properties of different regions. No sin-
gle interpolation method can always be used to obtain the 
most accurate result when applied to all regions and soil 
properties (Long et al., 2014). Therefore, it is important to 
analyse the specifics of soil properties in the study area in 
order to obtain a more accurate spatial distribution map.

In their study of the spatial distribution of SOCS and 
total SOC in Moscow, Russia, Vasenev et al. (2014) found 
that the spatial distribution of SOC and SOCS is closely 
related to the increase in continued urban expansion. In 
urban areas, rapid urban expansion and industrialization, as 
well as intensive human activities are the main stochastic 
factors responsible for the spatial variation in SOC. Among 
the many stochastic factors affecting the spatial variability 
in urban soil organic carbon, the differences between land 
use types are often considered to be one of the direct driv-
ers of both high and low soil organic carbon content (Liu 
et al., 2006; James et al., 2019). In this study, according 
to Table 2, the SOC content and SOCD1 in the experimen-
tal area had a weak spatial correlation, and each sampling 
point showed both a high degree of independence and ran-
domness. This indicates that both stochastic and structural 
factors synergistically influence the spatial distribution of 
SOC in the Xiong'an New Area, and also, that its spatial 
variability is mainly regulated by stochastic factors, which 
is in agreement with the results of Wang et al. (2009) con-
cerning urban SOC in Shenyang city. Also, differences in 
land use were found to significantly affect soil nutrients 
(Fig. 2), with soil nutrient contents usually being similar 
for the same land use type and significantly different for 
different land use types. In calculating the semivariance 
function, the original data was compared with the residuals, 

the C0/(C0+C) values of both were reduced by different 
degrees after removing the mean values of SOC content 
and SOCD under different land use types, the effects of sto-
chastic factors were effectively reduced, thereby indicating 
that it is feasible to use land use types as auxiliary variables 
for spatial prediction in this study.

The prediction results produced by different interpolation 
methods were compared, and significant differences were 
found between the different prediction methods (Table 3). 
The interpolation results of KLU were found to be more 
accurate compared with those of the other three interpola-
tion methods, and its predicted spatial distribution map 
was found to be more representative of the actual regional 
spatial pattern. In addition, as shown in Figs 5 and 6, the dif-
ferent land use types in the study area have obvious effects 
on the spatial distribution of SOC content and density, and 
also show significant differences in the spatial distribution 
maps. The prediction produced using the OK method mainly 
reflects the overall situation of the study area, which focuses 
on the interconnection between the sample point locations, 
and although the outliers are effectively avoided, the mini-
mum values of the soil properties are overestimated and the 
maximum values are underestimated due to the smoothing 
effect, this results in a lack of local detail information (Pang 
et al., 2011; Tripathi et al., 2015). Although the extreme val-
ues are considered in IDW and RBF, IDW and RBF are both 
susceptible to the influence of measured data and emphasize 
local volatility (Xu et al., 2015). By contrast, the predic-
tion results produced by the KLU method not only reflect 
the interconnection between the sample point locations, but 
also show the variability in the actual spatial distribution of 
SOC in the study area due to land use. In agreement with the 
results produced by this study, Long et al. (2020) in south-
east China and Boubehziz et al. (2020) in northeast Algeria 
also found that using auxiliary variables can effectively 
improve the interpolation accuracy and reduce the influence 
of external factors on soil variables.

As shown in Table 3, the KLU prediction accuracy of 
SOCD2 is highest in the upper soil layer, while the KLU pre-
diction accuracy of SOCD1 was found to be more accurate 
in the lower soil layer. This phenomenon may be due to the 
fact that the upper layer of soil is close to the surface. The 
SOC content and SBD of the upper layer are more independ-
ent and random as compared to the situation in the lower 
layer of soil (Table 2), these values are more substantially 
influenced by land use. The KLU of Method 2 considers the 
influence of land use on SOC content and SBD at the same 
time, while Method 1 considers the influence of land use 
only once, therefore the degree of error produced by Method 
1 was greater than of Method 2. The lower layer of soil is 
less profoundly affected by human activities, while the error 
in spatial analysis in terms of the SOC content and SBD 
exceeds the error of direct spatial analysis of SOCD, there-
fore Method 1 has a greater degree of prediction accuracy.
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Although KLU was found to significantly improve the 
prediction accuracy of SOC distribution in the study area, 
the predicted values still differed from the measured ones 
(Table 3). In addition to land use type, other natural factors 
such as topography, terrain, and climate may also synergis-
tically affect the spatial distribution of SOC. For example, 
Zhang et al. (2018) demonstrated that topographic elements 
were essential drivers of SOC content in the grassland soils 
of the hilly areas of northern China. Zhang et al. (2019) con-
cluded that topography and land use practices influenced 
SOC distribution in a hilly region of the Loess Plateau, and 
also, that there was a significant degree of interaction between 
them. Brovelli et al. (2012) found that SOC in riparian soils 
fluctuated with climate change. In addition, the selection of 
samples in the study area also affects the interpolation accu-
racy. Zhang et al. (2021) compared the interpolation accuracy 
of SOCS in the Karst Region at different sampling distances, 
and it was concluded that the interpolation accuracy varied 
with sample distance. When interpolating in flat areas, it is 
more sensitive to the distribution of sample points than when 
interpolating in complex terrain (Long et al., 2018). In sum-
mary, in order to further improve the accuracy of the spatial 
distribution of SOC content and density in the study area, the 
next step should be to consider the natural factors and the 
actual influence of sample point distribution.

CONCLUSIONS

1. As an urban area with frequent human activities and 
diverse land use patterns, the Xiong'an New Area has a large 
degree of spatial variability in terms of soil organic carbon. 
The soil organic carbon content decreased with increasing 
soil depth and was significantly affected by different land 
use types (p<0.05).

2. In this paper, the spatial distributions of soil organic 
carbon content and density in the 0-30 cm and 30-60 cm soil 
layers were studied by applying four interpolation methods, 
kriging combined with land use, ordinary kriging, inverse dis-
tance weighting and radial basis function, using measured 
data from 91 sampling points, and the soil organic carbon 
stocks was estimated. The results showed that land use sig-
nificantly influenced the spatial distribution of soil organic 
carbon in the Xiong'an New Area. Traditional interpolation 
methods (i.e., ordinary kriging, inverse distance weighting, 
radial basis function) produced a low degree of interpola-
tion accuracy for soil organic carbon content and density, 
while kriging combined with land use, which incorporates 
auxiliary variables, effectively eliminated the differences in 
soil organic carbon content and density distributions caused 
by different land use types, and provided more accurate soil 
organic carbon stocks prediction results.

3. Land use type obviously influences the spatial distribu-
tion of soil organic carbon in urban areas, and by using land 
use type as auxiliary data, a more accurate spatial distribution 
of soil organic carbon and prediction of its total storage capac-
ity may be estimated. By using the Xiong'an New Area as 

a research object, it is intended to provide the basis for urban 
planning and development and also urban land management 
based on this research.
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